skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacFadyen, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The multimessenger combination of gravitational waves (GWs) from merging massive black hole binaries (MBHBs) and the electromagnetic (EM) counterpart from the surrounding circumbinary disc (CBD) will open avenues to new scientific pursuits. In order to realize this science, we need to correctly localize the host galaxy of the merging MBHB. Multiwavelength, time-dependent EM signatures can greatly facilitate the identification of the unique EM counterpart among many sources in LISA’s localization volume. To this end, we studied merging unequal-mass MBHBs embedded in a CBD using high-resolution 2D simulations, with a $$\Gamma$$-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate each binary starting from before it decouples from the CBD until just after the merger. We compute EM signatures and identify distinct features before, during, and after the merger. We corroborate previous findings of a several orders of magnitude drop in the thermal X-ray luminosity near the time of merger, but with delayed timing compared to an equal-mass system. The source remains X-ray dark for hours post-merger. Our main results are a potential new signature of a sharp spike in the thermal X-ray emission just before the tell-tale steep drop occurs. This feature may further help to identify EM counterparts of LISA’s unequal MBHBs before merger without the need for extensive pre-merger monitoring. Additionally, we find a role-reversal in which the primary out-accretes the secondary during late inspiral, which may diminish signatures originating from Doppler modulation. 
    more » « less
  2. Abstract We demonstrate that gas disks around binary systems might deliver gas to the binary components only when the circumbinary disk is relatively warm. We present new grid-based hydrodynamics simulations, performed with the binary on the grid and a locally isothermal equation of state, in which the binary is seen to functionally “stop accreting” if the orbital Mach number in the disk exceeds a threshold value of about 40. Above this threshold, the disk continues to extract angular momentum from the binary orbit, but it delivers very little mass to the black holes and instead piles up mass in a ring surrounding the binary. This ring will eventually become viscously relaxed and deliver mass to the binary at the large-scale inflow rate. However, we show that the timescale for such relaxation can far exceed the implied binary lifetime. We demonstrate that the ability of a binary–disk system to equilibrate is dependent on the efficiency at which accretion streams deposit mass onto the binary, which, in turn is highly sensitive to the thermodynamic conditions of the inner disk. If disks around massive black hole binaries do operate in such nonaccreting regimes, it suggests these systems may be dimmer than their single black hole counterparts but could exhibit dramatic rebrightening after the black holes inspiral and merge. This dimming begins in the UV/optical and could completely choke high-energy emission, such that these systems would likely be intrinsically X-ray weak with reddened continua, potentially resembling the spectra of “little red dots” recently identified in JWST observations. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  3. ABSTRACT The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring. 
    more » « less
  4. Abstract Linear analysis of gas flows around orbiting binaries suggests that a centrifugal barrier ought to clear a low-density cavity around the binary and inhibit mass transfer onto it. Modern hydrodynamics simulations have confirmed the low-density cavity, but show that any mass flowing from large scales into the circumbinary disk is eventually transferred onto the binary components. Even though many numerical studies confirm this picture, it is still not understood precisely how gas parcels overcome the centrifugal barrier and ultimately accrete. We present a detailed analysis of the binary accretion process, using an accurate prescription for evolving grid-based hydrodynamics with Lagrangian tracer particles that track the trajectories of individual gas parcels. We find that binary accretion can be described in four phases: (1) gas is viscously transported through the circumbinary disk up to the centrifugal barrier at the cavity wall, (2) the cavity wall is tidally distorted into accretion streams consisting of near-ballistic gas parcels on eccentric orbits, (3) the portion of each stream moving inwards of an accretion horizon radius r ¯ ≃ a —the radius beyond which no material is returned to the cavity wall—becomes bound to a minidisk orbiting an individual binary component, and (4) the minidisk gas accretes onto the binary component through the combined effect of viscous and tidal stresses. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)